
Snakemake on Biowulf

Example Project

A set of ChIP-Seq experiments of the same
molecule in different genotypes.

Data arrives in chunks and needs to be cleaned,
QCed, aligned.

Peaks need to be called and compared.

Tracks generated, data prepared for interactive
analysis downstream, PCA, ...

We Would Like a Tool That
can figure out how to run a whole workflow based
on a set of rules for transforming one file type to
another
is reproducible
reruns steps if necessary (input files change or
processing steps change)
runs any necessary steps automatically as new data
is added

Snakemake Is a Rule Based
Dependency Tracker

Rules describe how to transform one file type into
another. Files are identified based on constant parts
of their name (e.g. .fastq, _fastqc.zip, ...)

Rule

Snakemake automatically determines what files are
needed to produce a certain file type based on the
rules. This information is used to calculate a
dependency tree for the whole workflow. Rules are
only executed if their outputs either don't exist or
are older than the input files.

Dependency Tracker

There Are Many Such Tools
make, ninja, scons, waf, ruffus, jug,
Rake, bpipe, paver, Galaxy, ...

So Why Use Snakemake?
Snakefiles are python code - i.e. a real programming
language is available
designed with bioinformatics in mind
easy to offload processes to cluster nodes
advanced pattern matching
multiple input and output files
many bonus features: configuration, wrappers,
target lists, graphs of workflow, reports, ...
keeps track of code changes in rules

Rules
Rules describe how to transform one file type into
another. Files are identified based on constant parts
of their name (e.g. .fastq, _fastqc.zip, ...)

unsorted text file

sorted text file

rule sort:
 input: "words.txt"
 output: "words.sorted.txt"
 shell: "sort {input} > {output}"

Rules

rule sort:
 input: "words.txt"
 output: "words.sorted.txt"
 shell: "sort {input} > {output}"

Rules

rule sort:
 input: "words.txt"
 output: "words.sorted.txt"
 shell: "sort {input} > {output}"

Rules start with
the rules keyword

Rules

rule sort:
 input: "words.txt"
 output: "words.sorted.txt"
 shell: "sort {input} > {output}"

Snakemake rule files are python
and therefore whitespace
sensitive

Rules

rule sort:
 input: "words.txt"
 output: "words.sorted.txt"
 shell: "sort {input} > {output}"

Snakemake uses filenames
to determine which rules to
apply

Rules

rule sort:
 input: "words.txt"
 output: "words.sorted.txt"
 shell: "sort {input} > {output}"

Rules can use shell:,
python (run:), and R (run: R())

Rules

rule sort:
 input: "words.txt"
 output: "words.sorted.txt"
 shell: "sort {input} > {output}"

Shell rules have to be quoted
with single or triple quotes

Rules

rule sort:
 input: "words.txt"
 output: "words.sorted.txt"
 shell: "sort {input} > {output}"

Use {...} to access input, output,
parameters, threads, log, wildcards,
and global variables. use {{...}}
to get literal braces.

Rules

rule sort:
 input: "words.txt"
 output: "words.sorted.txt"
 shell: "sort {input} > {output}"

Rules With Wildcards

rule sort:
 input: "{name}.txt"
 output: "{name}.sorted.txt"
 shell: "sort {input} > {output}

unsorted text file

sorted text file

unsorted text file

sorted text file

Live Demo

/data/classes/snakemake/01_sort_text_files

cp -r /data/classes/snakemake/01_sort_text_files .
cd 01_sort_text_files
ls -lh

total 16K
-rw-rw---- 1 wresch staff 218 Mar 28 19:20 numbers1.txt
-rw-rw---- 1 wresch staff 217 Mar 28 17:43 numbers2.txt
-rw-rw---- 1 wresch staff 2.9K Mar 28 19:58 README.md
-rw-rw---- 1 wresch staff 506 Mar 28 23:02 Snakefile

cat Snakefile

localrules: all, clean, merge

rule all:
 input: "numbers1-numbers2.txt"

rule merge:
 input: "{name1}.sorted.txt",
 "{name2}.sorted.txt"
 output: "{name1}-{name2}.txt"
 shell: "join -j1 -a1 -a2 -o 0 1.2 2.2 -eND {input} > {output}"

rule sort:
 input: "{name}.txt"
 output: "{name}.sorted.txt"
 log: "sort-%j.out"
 shell: "sort -k1,1 {input} > {output}"

rule clean:
 shell: "rm -f *.sorted.txt numbers1-numbers2.txt"

$ snakemake -s Snakefile all
since snakemake defaults to executing the first target in the
rule file 'Snakefile' this is equivalent to
$ snakemake

Provided cores: 1
Rules claiming more threads will be scaled down.
Job counts:
 count jobs
 1 all
 1 merge
 2 sort
 4
rule sort:
 input: numbers1.txt
 output: numbers1.sorted.txt

$ module load snakemake
or
$ module load python/3.4.3

$ snakemake

Nothing to be done.

Rerunnig snakemake if nothing changed
is a no-op

$ snakemake clean

rule sort:
 input: numbers2.txt
 output: numbers2.sorted.txt
 log: sort-%j.out
sort -k1,1 numbers2.txt > numbers2.sorted.txt
[...snip...]

Clean up

-n, --dry-run: run without executing rules
-p: print shell commands
$ snakemake -np

$ snakemake -n --reason --verbose

Resources before job selection: {'_cores': 1, '_nodes': 0}
Ready jobs (2):
 sort
 sort
Selected jobs (1):
 sort
Resources after job selection: {'_cores': 0, '_nodes': 0}
rule sort:
 input: numbers2.txt
 output: numbers2.sorted.txt
 log: sort-%j.out
 reason: Missing output files: numbers2.sorted.txt
[...snip...]

--verbose: more information
--reason: show reason why rule is being
executed

$ snakemake --list

all
merge
sort
clean

--list, -l: list all rules

$ snakemake --summary

output_file date rule version status plan
numbers1-numbers2.txt - merge - missing update pending
numbers2.sorted.txt - sort - missing update pending
numbers1.sorted.txt - sort - missing update pending

Use -S, --summary to show tabular
information about all files generated by
the workflow.

$ snakemake
$ snakemake --summary

output_file date rule version status plan
numbers1-numbers2.txt Mar 29 2016 merge - ok no update
numbers2.sorted.txt Mar 29 2016 sort - ok no update
numbers1.sorted.txt Mar 29 2016 sort - ok no update

$ snakemake

Nothing to be done.

$ touch numbers1.txt
$ snakemake --summary

output_file date rule version status plan
numbers1-numbers2.txt Mar 29 2016 merge - ok update pending
numbers2.sorted.txt Mar 29 2016 sort - ok no update
numbers1.sorted.txt Mar 29 2016 sort - updated input files update pending

$ snakemake -r

[...snip...]
rule sort:
 input: numbers1.txt
 output: numbers1.sorted.txt
 log: sort-%j.out
 reason: Updated input files: numbers1.txt

$ snakemake

Nothing to be done.

$ snakemake --summary

output_file date rule version status plan
numbers1-numbers2.txt Mar 29 2016 merge - rule implementation changed no update
numbers2.sorted.txt Mar 29 2016 sort - ok no update
numbers1.sorted.txt Mar 29 2016 sort - ok no update

What happens when the code executed by
a rule changes? Edit a rule and run

Targets are not automatically recreated but
code changes are tracked:

$ snakemake --lc # or --list-code-changes

numbers1-numbers2.txt

$ snakemake -R $(snakemake --lc)

Force recreation of all affected targets with

$ snakemake --lv # or --list-version-changes
$ snakemake -R $(snakemake --lv)

Rules can be given explicit versions
rule merge:
 input: "{name1}.sorted.txt",
 "{name2}.sorted.txt"
 output: "{name1}-{name2}.txt"
 version: "1.0"
 shell: "join -j1 -a1 -a2 -o 0 1.2 2.2 -eND {input} > {output}"

$ snakemake --lp # or --list-param-changes
$ snakemake -R $(snakemake --lp)

Param changes are tracked as well

Snakemake workflows can be run in parallel
on the local machine. -j specifies the number
of cpus snakemake is allowed to use.
Snakemake will use the information from the
threads section to determine how many jobs
can be run at the same time.

Running in Parallel - Locally

Don't do this on the login node

Snakemake workflows can be run in parallel
on the biowulf cluster. -j specifies the number
of jobs to run concurrently.
Limit local CPUs with --local-cores

Running in Parallel - On Cluster

Please run the master process as a
batch job or from an interactive
session.

$ snakemake --cluster "sbatch --time=5 --mem=50m --partition=quick"
$ snakemake --cluster "sbatch --cpus-per-task={threads}"
$ snakemake --cluster "sbatch --mem={params.mem}"

Submission is done via a template string
provided with --cluster

